
 1 

 
 

Probabilistic Quantitative Precipitation Forecasts  
Based on Reforecast Analogs: 

Theory and Application  
 
 

Thomas M. Hamill and Jeffrey S. Whitaker 
 
 

NOAA Earth Systems Research Lab, Physical Sciences Division 
(formerly the Climate Diagnostics Center) 

Boulder, Colorado 
 
 
 

Submitted to Monthly Weather Review 
 
 
 
 
 
 
 

14 October 2005 
 
 
 
 
 
 
 
 
 
 

Corresponding author address 
 

Dr. Thomas M. Hamill 
NOAA ESRL/PSD,  

R/PSD 1, 
325 Broadway  

Boulder, Colorado 80305-3328 
E-mail: tom.hamill@noaa.gov 

Phone: 1 (303) 497-3060 
Fax: 1 (303) 497-6449 



 2 

ABSTRACT 

 
 A general theory is proposed for the statistical correction of weather forecasts 

based on observed analogs.   An estimate is sought for the probability density function 

(pdf) of the observed state, given today’s numerical forecast.   Assume that an infinite set 

of reforecasts (hindcasts) and associated observations are available, and that the climate 

is stable.  Assume that it is possible to find a set of past model forecast states that are 

nearly identical to the current forecast state.  With the dates of these past forecasts, the 

asymptotically correct probabilistic forecast can be formed from the distribution of 

observed states on those dates.  

 Unfortunately, this general theory of analogs is not useful for estimating the 

global pdf with a limited set of reforecasts, for the chance of finding even one effectively 

identical forecast analog in that limited set is vanishingly small.  Nonetheless, 

approximations can be made to this theory to make it useful for statistically correcting 

weather forecasts.  For instance, when estimating the state in a local region, choose the 

forecast analogs only based on the local weather, for which there usually is an ample 

supply with a modest-sized reforecast.   

 Several approximate analog techniques are then tested for their ability to skillfully 

calibrate 24-h accumulated probabilistic quantitative precipitation forecasts (PQPFs).  A 

25-year set of reforecasts from a reduced-resolution global forecast model is used.  The 

analog techniques find past ensemble-mean forecasts in a local region that are similar to 

today’s ensemble-mean forecasts in that region.  Probabilistic forecasts are formed from 

the observed weather on the dates of the past analogs.  All of the analogs techniques 

provide dramatic improvements in the Brier skill score relative to basing probabilities on 
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the raw ensemble counts or the counts corrected for bias.  However, the analog 

techniques were not much more skillful than those from a logistic regression technique.    

Among the analog techniques tested, it was determined that small improvements to the 

baseline analog technique that matches ensemble-mean precipitation forecasts are 

possible. Forecast skill can be improved slightly by matching the ranks of the mean 

forecasts rather than the raw mean forecasts, by using highly localized search regions for 

shorter-term forecasts and larger search regions for longer forecasts, by matching 

precipitable water in addition to precipitation amount, and by spatially smoothing the 

probabilities.
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1.  Introduction 

 
 Despite much recent progress in numerical weather prediction, weather forecasts 

are still subject to error, both as a result of the growth of initial-condition errors and 

model errors.   Near-surface forecasts and forecasts of hydrologic variables such as 

precipitation or cloud properties are particularly error prone, in part because these 

physical processes often occur at scales below those resolved by the model.  These 

effects must be “parameterized,” and developing accurate parameterizations is a difficult 

endeavor.  As computational power increases, forecast models have been updated and 

increased in resolution to address these problems.  

 A complementary pathway to improved forecasts for users is to utilize a known 

weather forecast model consistently, so that a long past time series of weather forecasts 

are available.  If the climate is relatively stable, then the errors in past similar weather 

scenarios can be used to statistically correct the current numerical forecast. This approach 

is of course well established, being the essence of Model Output Statistics, or “MOS” 

techniques (Glahn and Lowry 1972, Carter et al. 1989).   If today’s numerical forecast 

indicates relatively ordinary conditions, then perhaps the past few months or year will 

have exhibited enough other similar scenarios that the current forecast can be properly 

adjusted.  But what if the weather is relatively unusual? Suppose high rain amounts are 

forecast for a desert location; it is likely that there will have been few similar forecast 

events at that location that can be used to determine how to correct the forecast. If a 

model’s systematic errors are similar throughout a region, then the effective sample size 

can be increased by pooling the training data over many geographic locations.  However, 
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if the forecast errors are regionally dependent, there may be no effective substitute for a 

training database that spans many years or decades. 

 The presumed benefit of large training datasets motivated our foray into 

“reforecasting,” the production of a large data set of retrospective forecasts using the 

same model that is run operationally.  Recently, we produced a sample reforecast data set 

(Hamill et al. 2004 and Hamill et al. 2005, hereafter HWM05).  The novel feature of this 

prototype data set was the extraordinary length and volume of the reforecast training data 

set, 25+ years of 2-week ensemble forecasts initially centered on a reanalysis state. Such 

a large training data set may permit accurate statistical adjustments even for some 

relatively rare events. A disadvantage of relying on reforecasts is the computational 

expense of generating them.  To reduce this expense, we used a 1998 version of the 

National Center for Environmental Prediction’s  (NCEP’s) Global Forecast System 

(GFS) at a reduced, T62 resolution; certainly, it would be preferable to use a newer, 

higher-resolution model. 

 In the HWM05 article, a simple, skillful, two-step analog statistical correction 

technique was introduced as a way of making probabilistic forecasts, and we return to 

consider this analog technique more closely here.  The first step in the analog technique 

was to compare the current forecast to all past forecasts at a similar time of the year in a 

local region.  Second, the dates of the closest matches were determined, and an ensemble 

was formed from the higher-resolution observed weather on those dates, from which 

probabilities could be calculated from the event frequency.   A gridded field of 

probabilities was produced, tiling together the probabilities computed for each 

independent region.  Probabilistic forecasts from this ensemble were both reliable and 
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specific when compared to forecasts generated from a more recent, higher-resolution 

version of the National Centers for Environmental Prediction (NCEP) Global Forecast 

System (GFS) ensemble.  The analog technique was able to correct the forecast bias and 

ensemble spread deficiencies and downscale the output to the scale of the higher-

resolution, 32-km precipitation analysis (the North American Regional Reanalysis, 

Mesinger et al. 2005). 

 As HWM05 was an overview article, much detail and context were missing, and 

this article is intended to provide this context.  Specifically, the purpose of this article is: 

(1) to provide an underlying theoretical basis for use of analog technique and explain the 

practical approximations that must be made in order to apply it,  (2) to compare the 

analog technique against a few logical alternatives, such as logistic regression, and (3) to 

explore whether the simple analog technique of HWM05 can be enhanced further through 

slight algorithmic variations.  The intent of this article, however, is not to provide an 

exhaustive comparison of the myriad of possible calibration techniques that exist in the 

literature.  The few non-analog methods we test are included primarily to help understand 

the reasons why the analog methods provide such an improvement over probabilities set 

from the raw ensemble forecasts. A rigorous comparison against other calibration 

techniques would indeed be interesting, but many of them were designed with small 

training data sets in mind, applying approximations such as compositing training data 

over many locations.   

 Below, we first provide a theoretical underpinning for this two-step analog 

technique (section 2).  The data sets and a variety of specific statistical correction 
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techniques are then described (section 3), and an intercomparison of these techniques are 

provided (section 4), with conclusions (section 5).  

 The data used in this study is also freely available (section 3.a), and we encourage 

others that would be interested in testing their methods to use this data set and compare 

their results against the benchmarks set here. 

 

2.  Theoretical basis of the analog technique and simplifying assumptions. 

 

 Let us suppose we have an ensemble of gridded forecast model states for a 

particular time.  Assume that there are n components to the state vector, and m ensemble 

members.  We thus have a m*n-component forecast vector xf composited from the 

ensemble members’ forecasts:  
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Suppose we are interested in the p-dimensional observed state of the atmosphere  
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at the same time; this could be the state at grid points or specific locations.  The 

probabilistic weather forecast problem is then conceptually simple; we seek  
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where  f !( )denotes the probability density function; that is, we want to accurately 

quantify the probability distribution of the observed state of the atmosphere, given the 

ensemble forecast.  Were the observed state comprised of the same variables at the same 

locations as the forecast state and the forecast model were perfect (i.e., chaos was the 

only source of error, and the ensemble perfectly represented this), then the relative 

frequency from the ensemble would provide an adequate definition of any event 

probability, accurate within sampling error: 

 

 
 

P xi
t > T( ) =

1

m
I xi

f
j( ) ,T( )

j=1

m

!       (4) 

 
where T is the threshold for some chosen event, 

 
I xi

f
j( ) ,T( )= 1 when 

 xi
f
j( ) > T  , and 

0 otherwise.  Unfortunately, ensemble forecasts are typically quite imperfect, due to 

model errors and deficiencies in the method of constructing the ensemble.  

 If the climate was stable and it was possible to compute a nearly infinite set of 

reforecasts with associated verification data, then it would be possible to compute eq. (3) 

directly, even in the presence of model error. With this nearly infinite ensemble, we could 

simply find past forecast states that were almost identical to the current forecast state and 

then determine eq. (3) from the distribution of the observed states on those dates.   

Suppose there are s reforecasts of the same forecast lead time that are practically identical 

to the current forecast at that lead.  Let 
  
x
t |r = x

t |r
(1) ,…, x

t |r
(s)( ) denote the collection of 

the s associated past observed states on the dates of the nearly identical reforecast 

analogs.  Then to find the event probability at a given location, 

 



 9 

 
 
P x

i

t > T( ) =
1

s
I x

i

t |r
,T( )

k=1

s

! ,      (5) 

 
where 
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i

t |r
,T( )=1 when 

 xi
t |r
j( ) > T and 0 otherwise. All that is being done here is to 

determine the fraction of time when the threshold is exceeded using the observed data 

associated with the chosen analogs.  If the observed state is actually providing describing 

the atmospheric state at much smaller scales than the original forecast, then this 

procedure amounts to a statistical downscaling (Zorita and von Storch 1999).   

 This process of eq. (5) is conceptually illustrated in Fig. 1 with a synthetic 10000-

day reforecast data set.  Here we have created a time series of reforecast and associated 

observed data; the state is a scalar, and the forecast is deterministic, so the problem can 

be visualized two dimensionally.  Consider the event that the true state is > 0.0.  Suppose 

our criteria for closeness of a reforecast to the current day’s forecast was to be within a 

window of 0.5 units.  To apply eq. (5), we find the forecast points in vertical columns of 

this width and then count the fraction with observed data > 0.0; the horizontal bars in Fig. 

1 provide the probability based on this simple count.  Also plotted is a fitted logistic 

regression curve (Wilks 1995) to the data.  In comparison to the analog process, the 

logistic regression parameters are fit using all of the scatter plot data at once, rather than 

just the data from close forecast analogs.  Depending on the data, the smooth, S-shaped 

logistic-regression curve may provide a better or worse fit than the analogs when sample 

size is finite. 

 It is worth considering the asymptotic error characteristics of such a forecast 

approach as skill increases or decreases.  If the forecast is totally uncorrelated with the 

observed data, then using (5) will reproduce the climatological distribution, within 
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sampling error.  If the forecast system’s fidelity improves so that the correlation of 

forecast and observed approaches 1.0, the probabilistic forecasts will get increasingly 

sharp without losing reliability.  In the asymptotic limit that the forecast error approaches 

zero, the probabilistic forecast will approach a perfect deterministic forecast.  In this case, 

of course, a reforecast would be unnecessary, but as this asymptotic limit is only of 

theoretical concern (Lorenz 1963), it is at least comforting to know that the performance 

of the statistical analog approach in eq. (5) will improve as the forecast model improves. 

 The analog process is quite simple as illustrated in Fig. 1, but suppose the model 

state is a 100-member ensemble forecast of winds, temperatures, humidity, and 

geopotential at millions of grid points covering the globe.  Even with billions of years of 

reforecasts, it may prove difficult to find many close global analogs (Lorenz 1993, p. 86, 

Van den Dool 1994).  And even were a reforecast available over such a long period of 

time, the climate, and indeed the continents themselves, were not very stable.  Hence, 

simplifying assumptions are required. Some possible assumptions may include: 

 
 • If we are concerned specifically with the assessing the probabilities at a 

particular location, only the forecast model state around that location may be 

needed, e.g., to estimate probabilities for Washington, D.C., it is only necessary to 

find the dates of past forecasts matching today’s D.C.-area forecast; matching or 

not matching at other distant locations is irrelevant (Van den Dool 1989). In the 

terminology of linear regression, the model forecast state at the distant locations 

would not make useful predictors. 
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 • If provided with a forecast ensemble, it may be unnecessary to match all the 

aspects of the ensemble; matching the mean state may be sufficient, or perhaps 

the mean and the spread, rather than requiring that each member match. 

 • If considering an event like surface temperature, it may be sufficient to 

match reforecasts of surface temperature alone, ignoring other forecast aspects 

such as upper-level winds or temperatures.  

 
3.  Data sets and methods. 

 
 Below, we provide a brief description of the reforecast and verification data sets, 

and then more detail on various statistical correction techniques and the metrics for 

evaluating forecast skill.  Our focus is on the calibration of 24-h accumulated 

probabilistic quantitative precipitation forecasts at the scale of the scale of the verification 

data, ~ 32 km. 

 
a. Reforecast and verification data sets.  

 
  HWM05 provide a more complete description of the reforecast data set. The 

forecast model is a 28-level, T62 resolution version of NCEP's Global Forecasting 

System (GFS) model using physics that were operational in the 1998 version of the 

model.  The reforecasts were generated at the NOAA lab in Boulder, Colorado, and real-

time forecasts are now generated at NCEP and archived in Boulder. A 15-member 

ensemble was produced every day from 1979 to current, starting from 0000 UTC initial 

conditions.  The ensemble initial conditions consisted of a control initialized with the 

NCEP-National Center for Atmospheric Research (NCAR) reanalysis (Kalnay et al. 
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1996) and a set of 7 bred pairs of initial conditions (Toth and Kalnay 1993, 1997) re-

centered each day on the reanalysis initial condition.  The breeding method was the same 

as that used operationally in January, 1998.  The forecasts extended to 15 days lead, with 

data archived every 12 h.   Winds, temperature, and geopotential height are available at 

the 850, 700, 500, 250, and 150 hPa levels.  10-m wind components, 2-m temperature, 

mean sea-level pressure, accumulated precipitation, convective heating, precipitable 

water, and 700 hPa relative humidity were also archived.  General reforecast data is 

available online at www.cdc.noaa.gov/reforecast .   

 The observed 24-h precipitation data was taken from the North American 

Regional Reanalysis, or NARR, described in Mesinger et al. (2005).  The data was on a 

32-km Lambert-conformal grid.  Only grid points over the conterminous U.S. were used. 

 For all subsequent experiments, the data set will consist of reforecasts from 1 

January 1979 to 31 December 2003, 25 years of forecasts. 

 For those who wish to test their own methods against those described here, the 

specific reforecast and training data used in this experiment is available at 

www.cdc.noaa.gov/reforecast/testdata.html .   

 
b. Probabilistic estimation techniques. 

 We now briefly review 10 different techniques for estimating precipitation event 

probabilities.  The first does not use the reforecast data set; the rest do. 

 
 1) ENSEMBLE RELATIVE FREQUENCY 

 
 The simplest approach uses no statistical calibration.  The relative frequency of 

event occurrence is estimated directly from the 15-member ensemble, interpolated to the 
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32-km NARR grid.  For example, if 5 of the 15 members at a point indicate greater than 

25 mm rainfall, the probability is set to 33.3 percent. 

 
 2) BIAS-CORRECTED RELATIVE FREQUENCY 

 
 In this procedure, probabilistic forecasts are generated from an ensemble of 

forecasts, where each member has been bias-corrected according to the long-term bias 

statistics for that grid point and time of year.  This follows a technique proposed by Y. 

Zhu at NCEP (personal communication, 2005).  Let 
 FY

C
y( ) denote the cumulative 

distribution function CDF of the 24-h precipitation amount of climatology, defined by 

 
 

 FY
C
y( ) = PrY

C
Y ! y( ).       (6) 

 
Here Y is the random variable, y the specific amount being considered, and Pr !( )  

indicates the probability, which will be determined by frequency from a large sample.  

Similarly, define a CDF for the 24-h ensemble forecast amount, 
 FX

E
x( )  defined by 

 
 

 FX
E
x( ) = Pr

X

E
X ! x( ) .       (7) 

 
The technique is then rather simple.  For a given day of the year, we compute 

 FY
C
y( ) and 

 FX
E
x( ) using the 25 years x 91 days (centered on the day of interest) of analyzed 

precipitation and interpolated member forecasts.  Then, for a given ensemble forecast on 

that day with the value x, we determine a value y such that 
 
FY
C
y( ) = 

 
F
X

E
x( ) .  The 

ensemble member forecast x is then replaced with the value y.  This is illustrated in Fig. 2 

for today’s hypothetical forecast and the forecast and observed CDFs.  As implemented at 
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NCEP in 2004, the technique is slightly different; only a short training sample is used, 

such as the past 30 days, and the technique generates CDFs that are not location-specific, 

instead representing an average over the domain.  

 
 3) BASIC ANALOG TECHNIQUE 

 
 This procedure was described in HWM05, and a simple pictorial representation of 

the method is provided in Fig. 3.   As suggested in section 2, application of the full 

analog theory assumes a nearly infinite training sample.  Without this, we adopted several 

of the simplifying assumptions; namely, we search only for local analogs, match the 

ensemble-mean fields, and consider only the model forecast of precipitation (no winds, 

temperature, geopotential, etc.) in selecting analogs. 

 The first step of the procedure is to find the closest local reforecast analogs to the 

current numerical forecast.  That is, within a limited-size region, the forecast for the day 

under consideration (the map in the top row in Fig. 3) is compared against past forecasts 

in that same region and at the same forecast lead.  Specifically, the ensemble-mean 

precipitation forecast pattern is computed at a subset of 16 coarse-mesh reforecast grid 

points surrounding the region where analogs are sought.  The ensemble-mean forecasts at 

these points are compared to ensemble-mean reforecasts at these points in all the other 

years (a cross-validation procedure), but only those within a window of 91 days (+ / - 45 

day window) around the date of the forecast.  This is done under the presumption that 

model biases may change substantially with the time of year.  The root-mean square 

(RMS) difference between the current forecast and each reforecast is then computed, 

averaged over the 16 grid points.  The n historical dates with the smallest RMS difference 
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are chosen as the dates of the analogs (the maps in the second row of Fig. 3).   The next 

step is the collection of the ensemble of observed weather on the dates of the closest n 

analogs (third row in Fig. 3).  Probabilistic forecasts are then generated using the 

ensemble relative frequency; for example, if 3/4 of the members at a grid point had 

greater than 10 mm accumulated rain, the probability of exceeding 10 mm was set to 75% 

(fourth row in Fig. 3).  This can then be compared to the observed weather (bottom row).  

The process is then repeated for other locations around the US.  A 32-km probabilistic 

forecast is generated, tiling together the local analog forecasts. 

 Commonly, many more than the four members shown in this figure would be 

used.  In actuality, ensembles of size 10, 25, 50, and 75 were computed.  In subsequent 

figures, the skill scores will be plotted only for the optimal size.  In general, the optimal 

size was smaller for heavier precipitation events and shorter forecast leads. For more 

information on the optimal ensemble size, see HWM05, Fig. 7. 

 
 4) LOGISTIC REGRESSION  

 
 Logistic regression estimates event probabilities at a particular location through 

an equation of the form  

 

 
   

P(x
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1
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ensemble-mean precipitable water interpolated to the observation location, measured in 

mm.  The regression coefficients are determined in a cross-validated manner; when 

coefficients are developed for grid points for a particular year, that year’s forecasts are 

excluded from the training data.  As with the basic analog technique, a 91-day window of 

forecasts is used.  Multiplied by the 24 years of training data, this provided a sample size 

of 2184.  Logistic regression techniques were tried without precipitable water, and 

without the power transformation; both were somewhat less skillful, and results for these 

will not be presented. 

 Unlike the analog technique, the logistic regression technique uses all of the data 

to determine the regression curve, not just a subset of close analogs.  This has the 

advantage of increasing the sample size but the potential disadvantage that cases very 

dissimilar to the forecast of interest on that day are also being used to estimate the 

probabilities.  Another disadvantage of the logistic regression technique is it provides 

only a probability for the event threshold under consideration; if probabilities are desired 

for a different threshold, the regression analysis must be repeated.  In comparison, when 

using analog techniques, once the analog members are chosen, probabilities can be 

defined quickly for any event threshold. 

 
 5) BASIC TECHNIQUE USING INDIVIDUAL MEMBERS 

 
 This technique is similar to the technique in section 3.b.3, but instead of searching 

for analogs of the ensemble mean, member 1’s forecast is compared against past member 

1 reforecasts, the dates of the 5 closest matches were noted, and the process was repeated 

for the rest of the 15 members, producing 75 (possibly non-unique) dates.  If an ensemble 
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of size smaller than 75 is to be formed, the dates of the closest pattern matches from the 

set of 75 dates are used.  Comparing the skill of these forecasts to that of the basic 

technique will indicate whether the information content can be distilled down to the 

ensemble mean, or whether there was extra information in each member. 

 
 6) BASIC TECHNIQUE INCLUDING PRECIPITABLE WATER  

 
 This technique repeats the basic analog technique from section 3.b.3, but instead 

of only matching the ensemble-mean precipitation amount, column precipitable water is 

included as well.  When measuring the closeness of a past reforecast, the ensemble-mean 

precipitation is weighted by 70 percent and the precipitable water by 30 percent. 

 
 7) BASIC TECHNIQUE INCLUDING 2-M TEMPERATURE and 10-M WINDS  

 
 This technique repeats the basic analog technique from section 3.b.3, but instead 

of only matching the ensemble-mean precipitation amount (in mm), 2-m temperature (K) 

and 10-m u- and v-components of the wind (ms-1) are included as well.  When measuring 

the closeness of a past reforecast, the differences in precipitation, temperature, and wind 

speed between today’s forecast and the past reforecasts at the 16 grid points are squared 

and then summed, and the analogs’ dates are those with the smallest sums. 

 
 8) RANK ANALOG TECHNIQUE 

 
 This technique is generally the same as the basic analog technique described in 

section 3.b.3, with one exception.  When determining the closest matches, at each of the 

16 grid points, the rank is computed for today’s precipitation forecast amount when  
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pooled with the reforecasts.  Similarly, the rank of the precipitation amount is determined 

at each grid point for each of the candidate reforecasts.  The analog dates are those with 

the lowest sum of the absolute value of rank differences over the sixteen points.   

 The rank analog technique is included here because results will show (section 4, 

Fig. 13) that at early leads, the basic analog technique produced somewhat unreliable 

forecasts, under-forecasting precipitation probabilities.  Upon closer examination, it was 

determined that this was primarily because the distribution of precipitation forecast 

amounts was skewed, with lighter amounts more common than heavier amounts.  

Consequently, the basic technique’s closest forecast analogs more commonly had slightly 

less precipitation than today’s forecast more often than they had slightly more 

precipitation.  Using a rank-based approach was proposed as a way of ensuring that more 

equal numbers of heavier and lighter forecast events were used as analogs. 

 
 9) RANK ANALOG WITH SMALLER SEARCH REGION 

 
 This technique repeats the rank analog technique from section 3.b.8, but instead 

of finding a match over a set of 16 grid points (see Fig. 3), only the four center grid 

points are used in determining the dates of the reforecast analogs.  A comparison of this 

against the rank analog will indicate whether the size of the search region is an important 

determinant of forecast skill. 

 
 10) SMOOTHED RANK ANALOG TECHNIQUE. 

 
 Most of the prior analog approaches discussed in this article produce probability 

estimates for an 8x8 box of 32-km grid points, finding analogs using the surrounding, 
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large-scale forecast fields (see Fig. 3).  To produce a national map of the probabilities, the 

process is repeated for other regions, and the final map is a composite of the 8x8 patches.  

Unfortunately, sometimes the dates of the analogs can be quite different for one set of 

8x8 boxes when compared to its adjacent sets.  This may result in a slight discontinuity of 

the probabilities at the boundaries between patches.  Accordingly, we test a simple 

smoothing algorithm to eliminate this effect.  Aside from the smoothing applied at the 

end, this method will be identical to the rank analog technique, described previously. 

 To understand the smoothing, consider Fig. 4.  Say we seek to estimate the 

probabilities on the 32-km grid at the orange grid points.   The analogs were determined 

by matching today’s forecast at the large-scale grid points (large black dots) to past 

forecasts at these same dots.  For the orange dots, there were actually nine separate 

regions where analogs and the subsequent probabilities were calculated that overlapped 

the orange dots, shown in the nine panels of Fig. 4.  In all previously described analog 

algorithms, estimates at eight of these were thrown away, and only the probabilities from 

analogs from the middle search region were used.   

 Here the smoothing algorithm uses several of the estimated.  Consider the orange 

grid point surrounded by the red box in Fig. 4.    Let wul, wum, wur, wml, wm, wmr, wll, wlm, 

and wlr, denote the weights applied to the probability estimates using the upper left box, 

the upper middle box, and so on.  Let dul, dum, dur, dml, dm, dmr, dll, dlm, and dlr indicate the 

distance between the center point of each calculation region (the blue dot) and the red 

box, and let  

w'ul, w’um, w’ur, w’ml, w’m, w’mr, w’ll, w’lm, and w’lr represent a non-normalized weight.  

Here, define the threshold distance D to be 128 , the distance in NARR grid points 
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between the upper-left and middle blue dots. First, a non-normalized weight is calculated 

according to  

 

 

w 'x x =

D ! dx x

D + dx x
i f dx x < D

0 i f dx x " D

      (9) 

where xx is one of the nine regions, e.g., ul.  After all nine non-normalized weights are 

calculated, then weights are normalized by the sum of the non-normalized weights.  For 

example, 

 
 

w
u l
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w '
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w '
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m
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l m

+ w '
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 (10) 

 
For example, the nine weights for the red box from upper left to the lower right are 0.134, 

0.188, 0.000, 0.261, 0.379, 0.004, 0.004, 0.029, and 0.000. 

 
c.  Performance measures. 

 
 A primary metric of forecast performance will be the Brier Skill Score (BSS; 

Wilks 1995).   A Brier Score (ibid) was calculated both for the forecast (BSf) and for 

climatology (BSc), and the BSS was then calculated according to 

 
 BSS = 1.0 – BSf / BSc  ,       (11) 

Climatology here was determined from the sample event probability as computed from 

the observed 1979-2003 data.  To ameliorate the possibility that false skill was reported 

from using a composite climatology over seasons or diverse locations (Hamill and Juras 

2005), climatological probabilities were determined separately for each grid point and 
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day of the year using the 25 years times 61 days (the day of interest +/- 30 days).  

Climatological probabilities were not cross validated. 

 Because of the extremely large sample size of the forecasts, even small 

differences in the BSS tended to be statistically significant.   Tests of significance were 

evaluated with the block bootstrap technique described in Hamill (1999). 

 Reliability diagrams (Wilks 1995) will also be used to illustrate the degree of 

correspondence between forecast probabilities and observed relative frequencies. 

 
4.  Results. 

 
 Tables 1 and 2 provide the BSS for each of the 10 techniques discussed in the 

previous section.  The bias-corrected relative frequency technique improved the forecast 

of 2.5-mm forecasts somewhat compared to the ensemble relative frequency technique, 

but it tended to lower the skill of the 25-mm forecasts.  All the rest of the methods 

provided a consistent, very large improvement over the ensemble relative frequency 

technique.   With the exception of the bias-corrected relative frequency, the skill 

differences between the various reforecast-based calibration techniques were much 

smaller; having achieved most of the skill with the basic analog technique or the logistic 

regression technique, other methods had only slightly larger or smaller skill scores. 

 Let’s examine these results in more detail.  First, consider forecasts from the 

ensemble relative frequency technique.  Figure 5 provides a plot of the BSS of this 

technique as a function of the time of the year and the forecast lead time.  Unsurprisingly, 

skill was larger at short leads and larger in the cool season. Regrettably, many of the 

forecasts were less skillful than the reference seasonal climatological distribution.  Light 
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precipitation forecasts in April were particularly unskillful; a subsequent examination of 

reliability diagrams, not shown, showed that light amounts were over-forecast in April 

much more commonly than at other times of the year.  Note also that skill increased when 

verified on coarser-spaced grids (not shown), as indicated by Gallus (2002). 

 The bias-corrected relative frequency technique improved the cool-season 

precipitation forecasts but tended to make the warm-season forecasts even less skillful 

(Fig. 6). How could this bias-correction technique worsen the forecast?  To understand 

this, we chose an 8x8 set of 32-km NARR grid points centered in northern Mississippi 

and examined the 1-day forecasts in mid-August, a date and location where the skill of 

25-mm forecasts decreased.  Figure 7a shows the average CDFs for the forecast and 

observed over these grid points. Light precipitation events were forecast much too 

frequently; for example, a 2-mm forecast was approximately at the 38th percentile of the 

forecast’s cumulative distribution, while the 38th percentile of the observed distribution 

was 0 mm.  Conversely, precipitation events above 16 mm were forecast less commonly 

then they were observed.  Figure 7b provides a scatter plot of 1-day forecasts of a single 

member from the ensemble, plotted against the observed precipitation.  Plotted over top, 

the green line illustrates the function that relates forecast precipitation to its adjusted 

amount based on the CDF differences.  The orange line indicates the mean of the 

conditional distribution of the observations given the forecast, plotted using a running-

line smoother with a window width of 4 mm (Hastie and Tibshirani, 1990). Using the 

CDF adjustment, all forecasts below ~5 mm were adjusted to zero precipitation, while a 

forecast precipitation amount of 30 mm was adjusted to ~ 45 mm.  Figure 7c illustrates 

the pdf adjustment for an ensemble forecast with a mean of ~25 mm. The dashed 
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histogram indicates the frequency distribution of the adjusted ensemble forecast, while 

the red histogram indicates the conditional distribution of observations, given an 

ensemble-mean forecast of between 23 and 27 mm.  As can be seen, the adjustment 

shifted the distribution further away from the conditional distribution of observations, so 

averaged over many similar cases, these forecasts should have scored worse than the 

uncorrected forecast. 

 At first glance, the difference between the CDF adjustment and the adjustment 

implied by the conditional distribution of observations appear contradictory:  if there 

were truly more high-precipitation events in the observed CDF than in the forecast CDF, 

then why would the conditional distribution of observed events given the 25-mm forecast 

have a mean observed value lower than the mean forecast?  The discrepancy was due to 

the lack of a strong relationship between forecast and observed data, i.e., the largest 

observed amount in the sample pool did not occur when the forecast the was largest. Had 

the forecasts and observations been very highly related, then the conditional distribution 

of observed events given a 25-mm ensemble-mean forecast would indeed be larger than 

25 mm, far different than the unconditional climatology.  In fact, as shown by the 

difference between the green and orange lines, the CDF-bias correction was in the wrong 

direction for forecasts above ~ 17 mm, where the CDF correction suggested a mapping of 

the forecast to higher amounts while the mean observed given the forecasts indicated the 

preferred mapping was toward lower amounts.  Asymptotically, then, the performance of 

this bias correction based upon differences in the CDFs was likely to make already bad 

forecasts (i.e., deficient in spread and poorly correlated with observations) worse when 

the observed and forecast CDFs differed.  The stronger the forecast-observed relation, the 
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more one can expect the CDF-based bias correction to improve forecast skill.  However, 

even then the CDF-adjustment method by construction did not correct for spread 

deficiencies, so even with a perfect forecast-observation relationship, this calibration 

technique may not result in as skillful probabilistic forecasts as other methods designed to 

address that aspect as well. 

 Suppose a bias correction was based on some type of regression analysis rather 

than the CDF technique.  Then, if forecasts and observed were uncorrelated, all member 

forecasts would be adjusted to the climatological mean, regardless of their initial value, 

converting the ensemble into a deterministic forecast.   And were the mean of the forecast 

distribution shifted but the spread of the ensemble preserved, one could envision 

situations where the shift could create members with unmeteorological, negative-valued 

precipitation amounts.   The overall lesson seems to be that it will be difficult to improve 

probabilistic forecast through some simple bias adjustments; errors in the mean and in the 

spread should both be addressed. 

 We return to examining the rest of the correction methods, all of which did 

improve upon the BSS compared to the ensemble relative frequency.  Figure 8 shows the 

BSS of the basic analog approach for each month.   The forecasts were almost universally 

skillful relative to climatology, with more skill in the cool season and more skill at short 

leads and lesser amount thresholds.   

 Figure 9 shows that the logistic regression technique performed quite similarly. 

The forecasts were slightly more skillful than the basic analog forecasts at day 1, and 

generally similar or less skillful than the basic analog at longer leads.  In Fig. 9, this skill 

comparison is visualized through the use of the grey shading. When the shading was 
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above the plotted line for the logistic regression technique, this indicated that the basic 

analog technique had a proportionally higher BSS; when the shading was below the 

logistic regression line, the basic analog technique had a lower BSS.  Because of the large 

sample size, even small differences tended to be statistically significant.  Applying a 

block bootstrap technique (Hamill 1999), the magnitude of yearly differences that were 

statistically significant at the 95 percent confidence level are presented in the last row of 

Tables 1 and 2; monthly differences that were significant were typically 2 or 3 times 

larger.  

 Was there an advantage to fitting individual ensemble members rather than the 

ensemble mean? Figure 10 presents the BSS for the basic technique using individual 

members, along with a comparison of skill relative to the basic analog technique. Fitting 

individual members provided forecasts of approximately equal skill for short leads, but 

for longer-range forecasts in the cool season, the skill was considerably worse when 

fitting individual members.  We hypothesize that at longer leads in the cool season, the 

filtering properties of the ensemble mean were helpful in extracting the predictable signal 

obscured by the chaotic error growth; when fitting individual members, one was fitting 

more noise than signal at the longer leads.  In the summer, we hypothesize that model 

systematic errors played a more dominant role in limiting forecast skill, and that the role 

of chaotic error growth was secondary. 

The logistic regression technique included an extra predictor for precipitable 

water.  If this extra predictor were incorporated into the analog technique, would the skill 

improve as well?  Figure 11 presents the skill of the basic technique including 

precipitable water. While warm-season forecasts of light precipitation amounts were 
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improved somewhat, otherwise the skill of the two methods were very comparable.  

Perhaps in the warm-season, the forecast precipitation amount is very sensitive to the 

vagaries of the convective parameterization and its triggering scheme; if the 

parameterization is not uniformly accurate, then the extra predictor, precipitable water, 

can provide useful information. 

 When 2-m temperatures and 10-m winds were included as predictors into the 

basic analog technique, the skill was uniformly poorer than the basic analog technique 

(Fig. 12).  While it is possible that temperatures and winds may have some predictive 

value in some circumstances, in this case the pre-specified equal weightings of 

precipitation, temperature, and wind components was not a good choice; the de-emphasis 

of forecast precipitation as a predictor lessened the skill.  However, a potential advantage 

of choosing analogs by a multivariate fit of precipitation, temperature, and winds is that if 

some users desired information on joint probabilities (how likely is it to be cold, windy, 

and wet?), the joint probability distribution could have been estimated directly from this 

set of analogs, while analogs chosen by a closeness of fit of precipitation forecasts would 

likely not be of much use for estimating winds, temperatures, or joint distributions. 

 As indicated in section 3.b.8, one deficiency of the basic analog technique that 

would be desirable to correct was a tendency for under-forecasting precipitation 

probabilities, especially at short leads (Fig. 13a).  This was due to the skewed, often 

exponentially shaped climatological pdf of forecast precipitation, causing a bias in the 

selection of closest analogs toward those with less forecast amounts.   When the rank 

analog technique was used, the reliability was markedly improved (Fig. 13b), the BSS 

was also substantially higher for the 2.5 mm forecasts, especially at the short forecast 
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leads, and the skill improvement was consistent across seasons (Fig. 14).  However, the 

25-mm rank-analog forecasts were slightly less skillful than the basic analog.  The rank 

analog forecasts were more reliable (not shown), but they were slightly less sharp. 

 Would forecasts be improved if the rank analog technique used a smaller search 

region than the 16 points in Fig. 3?  When using the inner 2x2 grid points, at short leads 

the skill of the 25-mm forecasts was improved substantially relative to the rank analog 

technique (Fig. 15). However, for the lighter precipitation amounts, the longer-lead 

forecasts in the warm season were slightly worse when using the smaller search region. 

The improvement at short leads for the high precipitation threshold indicated that the 

important predictor was the local precipitation forecast, and matching the pattern in the 

larger surrounding region was a less important consideration.  The reason for the shorter-

term forecasts being improved with the smaller search region was that systematic errors 

of the position bias were much smaller for the shorter-range forecasts.   A cross-

correlation analysis was performed that determined which NARR grid point had the most 

highly rank-correlated precipitation analysis with a given forecast grid point’s ensemble-

mean precipitation during the summer.  Averaged over the conterminous U.S., 4.85 grid 

points separated the highest-correlated observed location from the original grid point for 

a 1-day forecast, and 8.64 grid points for a 5-day forecast.  

 Finally, consider the effect of the smoothing algorithm discussed in section 

3.b.10.  This technique was the same as the rank analog technique, but now the 

probability forecasts were smoothed to eliminate discontinuities in the probabilities along 

box boundaries.  The smoothing produced a very slight improvement in the 2.5-mm 

forecast skill but improved the 25-mm forecast skill more substantially, especially at 
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short leads (Fig. 16).  An example of the subtle effects of the smoothing are shown in Fig. 

17.  Notice that the probability discontinuities in central Tennessee and western Georgia 

were smoothed between panels a and b. 

 
5.  Conclusions and discussion. 

 
 In this article we have examined the skill of 24-h accumulated probabilistic 

quantitative precipitation forecasts from a variety of analog techniques that utilized a 

new, 25-year global reforecast data set produced by NOAA.     

 A general theory for probabilistic weather forecasting based on analogs was first 

proposed.   Suppose an estimate is sought for the observed state’s pdf given today’s 

numerical forecast. Suppose also that we were provided with a nearly infinite set of 

reforecasts (hindcasts) and associated observations and that the climate was stable.  Then, 

past model forecast states could be identified that are nearly identical to the current 

forecast state.  Given the dates of these past analog forecasts, the asymptotically correct 

probabilistic forecast can be formed from the distribution of observed states on those 

dates.  

 This general theory could not be applied to global weather prediction given a 

limited set of reforecasts, for the chance of finding even one similar forecast analog in 

that limited set is highly improbable. However, approximations can be made to this 

theory to make it useful for statistically correcting weather forecasts.  For instance, when 

estimating the local pdf of the observed state given the forecast, it was possible to choose 

the forecast analogs only based on the local weather.  There commonly is an ample 
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supply of highly similar local forecasts given a modest-length reforecast to compare. 

However, the rarer the event, the more difficult it is to find close forecast analogs.   

 We then examined several approximate PQPF analog forecast techniques, using a 

25-year set of ensemble reforecasts.   The analog techniques found past ensemble-mean 

forecasts in a local region that were similar to today’s ensemble-mean forecasts in that 

region and formed probabilistic forecasts from the observed weather on the dates of the 

past analogs.  All of the analogs techniques provided dramatic improvements in the Brier 

skill score relative to basing probabilities on the raw ensemble counts or the counts 

corrected for bias.  However, the analog techniques were generally similar in skill to 

those from a logistic regression technique.    Comparing the various analog techniques 

tested, we found the following:  (1) Finding analogs for each member rather than for the 

ensemble mean generally decreased the forecast skill. (2) Finding analogs by matching 

not only mean forecast precipitation but also mean forecast precipitable water improved 

short-range, warm-season forecasts.  (3) Finding analogs by matching surface winds and 

temperatures in addition to precipitation decreased the precipitation forecast skill. (4) 

Finding analogs based on the closeness of the relative rank of the mean forecast rather 

than its magnitude improved reliability at the short forecast leads. (5) A smaller search 

region was preferable when finding analogs for short-range forecasts, and a larger search 

region was preferable for longer-range forecasts. (6) Smoothing increased the skill of the 

forecasts slightly. 

 We also considered the effectiveness of a proposed bias correction technique that 

adjusted precipitation amounts so that over many cases the forecast cumulative density 

function would match the observed cumulative density function.  This procedure has 
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been used in a slightly modified form at NCEP since 2004.    This technique tended to 

improve forecast skill relative to the raw ensemble in the wintertime but worsen it in the 

summer.  We determined that a CDF correction was generally unwise when the forecast 

and observed data are not highly correlated. 

 Despite the demonstrated skill and reliability of the reforecast-based techniques, 

many may believe it unwise to utilize forecast products from a T62, 1998 version of the 

NCEP GFS. Wouldn’t it be wiser to base a PQPF forecast upon raw output from more 

recent, higher-resolution model forecasts?  While numerical precipitation forecast skill 

undoubtedly has improved in the past ten years, there is reason to believe that the analog 

reforecast product demonstrated here are still competitive with these much newer, higher-

resolution forecast models (HWM05).   Calibrated products based on future, higher-

resolution reforecasts should be even more competitive, for even with a better model, 

calibration with reforecasts still has been shown to provide substantial benefit (Whitaker 

and Vitart 2005).   

 For reforecasts to be of most benefit, the current numerical forecast should be 

conducted with the same model and data assimilation methods used in the production of 

the reforecast.  This of course requires freezing the forecast model.  Considered in 

isolation, this approach would be unattractive to weather prediction facilities, which 

would prefer to implement forecast model improvements quickly.   Perhaps a dual-track 

system can be used, whereby an inexpensive fixed, reduced-resolution version of the 

forecast model is run alongside the frequently upgraded, operational higher-resolution 

version.   Users can choose for themselves whether they’d prefer guidance from the 

statistically adjusted older model, raw guidance from the newer model, or some blend.  
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Perhaps every few years, a new reforecast data set would be produced with a more recent, 

higher-resolution version of the model, so that the calibrated probabilistic guidance could 

leverage the improvement in the forecast models. 

 The literature has yet to demonstrate that quantum jumps in skill can be achieved 

with small training data sets. The skill increases in precipitation forecasts we have 

demonstrated here are equivalent to the skill increases afforded by many years of 

sustained model development by a large staff of scientists.   While we have concentrated 

here on demonstrating a calibration technique for precipitation, the statistical problems 

with precipitation are likely to be much more difficult than, say, for other commonly 

desired weather elements such as surface temperature.  We expect that with a long 

reforecast data set (saving more forecast variables than we did for this pilot project), it 

should be possible to produce calibrated probabilistic forecasts for even the thorniest of 

problems, such as precipitation type or severe-weather probability.   

 The US National Weather Service is currently considering how to make skillful, 

reliable probabilistic weather forecasts a part of its National Digital Forecast Database 

(Glahn and Ruth 2003, Mass 2003ab, Glahn 2003, 2005, Abrams 2004).   Perhaps 

reforecast-based techniques are the most straightforward and promising way to achieve 

this goal.  
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List of Figures 
 
 
Figure 1:  Illustration of two methods for setting probabilities using synthetic reforecast 

data. Dots are the reforecast data (abscissa) and the associated observed value (ordinate). 

Vertical bars denote bins for considering “nearby” analogs.  Heavy horizontal solid lines 

are the probabilities set by relative frequency in these bins (axis labels on right).  Dashed 

line is the probability set by logistic regression. 

 

Figure 2:  Illustration of the bias-correction technique described in section 3.b.2.    

Dashed line denotes the observed CDF, solid line the forecast CDF.  A raw forecast of 7 

mm is at approximately the 91st percentile of the forecast CDF; the 91st percentile of the 

observed CDF is approximately 5.6 mm.  Thus, the precipitation forecast is changed from 

7 to 5.6 mm. 

 

Figure 3:  Illustration of the basic analog technique for a 2-day forecast.  The ensemble 

mean precipitation forecast is shown in the first row, defined at the 16 dots.  Analogs and 

probability forecasts are desired for the dashed box in the middle.  The four closest 

matching 2-day ensemble-mean forecasts are shown in the second row, and the higher-

resolution observed weather on those dates are shown in the third row.  Probabilistic 

forecasts formed from the observed analogs are shown in the fourth row for 3, 10, and 25 

mm thresholds, and the observed data is shown in the bottom row. 

 

Figure 4:  Illustration of the smoothing algorithm.  Probabilities are sought in this case 

for the NARR grid points colored orange. The nine panels are the nine regions where 
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analog dates have been calculated that overlap the orange grid points.   Other NARR grid 

points are denoted by small black dots.  Analog matches are calculated by forecast 

similarity at the large black dots; the center of each analog search region is denoted by 

the blue dot.  For the orange grid point highlighted by the red box, the final probability is 

a weighted sum of the probabilities of the nine estimates, the weight being determined by 

the relative distance of the blue dot in that panel from the red box. 

 

Figure 5: Brier skill score of the ensemble relative frequency technique as a function of 

the time of the year and the lead time of the forecast. (a) Skill at 2.5 mm, (b) skill at 25 

mm. 

 

Figure 6:  As in Fig. 5, but for the bias-corrected relative frequency technique. 

 

Figure 7.  (a) Illustration of forecast and observed CDFs for 1-day forecasts in northern 

Mississippi during August. (b) Scatter plot of one ensemble member’s forecast vs. 

observed forecast.  Red curve illustrates the remapping that will occur between a forecast 

precipitation amount and the corrected amount, based on the CDF correction technique. 

Orange curve denotes remapping between forecast and mean observed given the forecast.  

(c) For 10 mm, a typical ensemble forecast distribution with a mean of 23-27 mm (solid 

line), the adjusted distribution (dashed line), and the conditional distribution of the 

observed values given an ensemble mean of 23-27 mm (in red).  
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Figure 8:  BSS of the basic analog technique as a function of the month and the lead time 

of the forecast. (a) Skill at 2.5 mm, (b) skill at 25 mm. 

 

Figure 9: Monthly BSS of the logistic regression technique, as in Fig. 8.  Grey shading 

on forecasts indicates skill difference relative to basic analog approach in Fig. 8; grey 

shading below the reference line indicates more skill than the basic analog approach, and 

shading above the reference line indicates less skill. 

 

Figure 10: Monthly BSS of the basic technique using individual members. Skill 

differences (grey shading, as in Fig. 9) are relative to the basic analog technique in Fig. 8. 

 

Figure 11: Monthly BSS of the basic technique including precipitable water, with skill 

again compared via shading relative to the basic analog technique in Fig. 8.  

 

Figure 12: Monthly BSS of the basic technique including 2-m temperatures and 10-m 

wind but for the basic technique including 2-m temperature and 10-m winds, with skill 

again compared via shading relative to the basic analog technique in Fig. 8. 

 

Figure 13: Reliability diagrams for 2.5 mm 1-day forecasts from (a) 50-member basic 

analog technique, and (b) 50-member rank analog technique. 

 

Figure 14:  Monthly BSS for the rank analog technique, with skill again compared via 

shading relative to the basic analog technique in Fig. 8. 
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Figure 15:  Monthly BSS of the rank analog with smaller search region technique.  Skill 

differences here are with respect to the rank analog technique in Fig. 14. 

 

Figure 16: Monthly BSS of the smoothed rank analog technique.  Skill differences here 

are with respect to the rank analog technique in Fig. 14. 

 

Figure 17:  Probability of greater than 2.5 mm precipitation for the 24-h period starting 

0000 UTC 11 January 1994, from (a) rank analog technique, and (b) smoothed rank 

analog technique. 
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Technique Day 1 Day 2 Day 3 Day 4 Day 5  Day 6 
1) Ensemble relative frequency .0840 -.0486 -.1098 -.1624 -.2117 -.2552 
2) Bias-corrected relative frequency .2642 .1753 .0597 -.0424 -.1318 -.2033 
3) Basic analog .4026 .3443 .2648 .1923 .1335 .0853 
4) Logistic regression .4108 .3395 .2564 .1842 .1266 .0815 
5) Basic using individual members .4061 .3414 .2555 .1774 .1155 .0692 
6) Basic including precipitable water .4080 .3486 .2687 .1969 .1378 .0898 
7) Basic including 2-m temperature 
and 10-m winds 

.3803 .3312 .2565 .1881 .1319 .0875 

8) Rank analog .4195 .3555 .2726 .1965 .1360 .0865 
9) Rank analog with smaller search 
region 

.4194 .3496 .2635 .1871 .1272 .0791 

10) Smoothed rank analog  .4260 .3613 .2779 .2020 .1415 .0925 
Difference that’s statistically 
significant, 2-sided test, α = 0.05. 

.0010 .0009 .0008 .0007 .0006 .0006 

 
 
Table 1:  Brier Skill Score for various forecast techniques at 2.5 mm, averaged over the 

25 years. Last row provides the amount of difference between two forecasts that is 

considered statistically significant according to a 2-sided test with a=0.05.  Highest score 

for a particular day in boldface type. 
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Technique Day 1 Day 2 Day 3 Day 4 Day 5  Day 6 
1) Ensemble relative frequency .0534 -.0668 -.0624 -.0473 -.0535 -.0559 
2) Bias-corrected relative frequency .0105 -.0503 -.0684 -.0731 -.0860 -.0894 
3) Basic analog .1816 .1298 .0887 .0597 .0357 .0201 
4) Logistic regression .1895 .1205 .0831 .0572 .0350 .0219 
5) Basic using individual members .1856 .1267 .0815 .0504 .0278 .0131 
6) Basic including precipitable water .1841 .1319 .0903 .0607 .0370 .0212 
7) Basic including 2-m temperature 
and 10-m winds 

.1715 .1245 .0854 .0587 .0363 .0217 

8) Rank analog .1727 .1260 .0878 .0588 .0350 .0193 
9) Rank analog with smaller search 
region 

.1860 .1280 .0865 .0568 .0326 .0176 

10) Smoothed rank analog  .1832 .1318 .0912 .0621 .0378 .0222 
Difference that’s statistically 
significant, 2-sided test, α = 0.05. 

.0015 .0012 .0010 .0009 .0007 .0007 

 
Table 2:  As in Table 1, but for 25 mm. 
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Figure 1:  Illustration of two methods for setting probabilities using synthetic reforecast 
data. Dots are the reforecast data (abscissa) and the associated observed value (ordinate). 
Vertical bars denote bins for considering “nearby” analogs.  Heavy horizontal solid lines 
are the probabilities set by relative frequency in these bins (axis labels on right).  Dashed 
line is the probability set by logistic regression. 
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Figure 2:  Illustration of the bias-correction technique described in section 3.b.2.    
Dashed line denotes the observed CDF, solid line the forecast CDF.  A raw forecast of 7 
mm is at approximately the 91st percentile of the forecast CDF; the 91st percentile of the 
observed CDF is approximately 5.6 mm.  Thus, the precipitation forecast is changed from 
7 to 5.6 mm. 
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Figure 3:  Illustration of the basic analog technique for a 2-day forecast.  The ensemble 
mean precipitation forecast is shown in the first row, defined at the 16 dots.  Analogs and 
probability forecasts are desired for the dashed box in the middle.  The four closest 
matching 2-day ensemble-mean forecasts are shown in the second row, and the higher-
resolution observed weather on those dates are shown in the third row.  Probabilistic 
forecasts formed from the observed analogs are shown in the fourth row for 3, 10, and 25 
mm thresholds, and the observed data is shown in the bottom row. 
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Figure 4:  Illustration of the smoothing algorithm.  Probabilities are sought in this case 
for the NARR grid points colored orange. The nine panels are the nine regions where 
analog dates have been calculated that overlap the orange grid points.   Other NARR grid 
points are denoted by small black dots.  Analog matches are calculated by forecast 
similarity at the large black dots; the center of each analog search region is denoted by 
the blue dot.  For the orange grid point highlighted by the red box, the final probability is 
a weighted sum of the probabilities of the nine estimates, the weight being determined by 
the relative distance of the blue dot in that panel from the red box. 
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Figure 5: Brier skill score of the ensemble relative frequency technique as a function of 
the time of the year and the lead time of the forecast. (a) Skill at 2.5 mm, (b) skill at 25 
mm. 
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Figure 6:  As in Fig. 5, but for the bias-corrected relative frequency technique. 
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Figure 7.  (a) Illustration of forecast and observed CDFs for 1-day forecasts in northern 
Mississippi during August. (b) Scatter plot of one ensemble member’s forecast vs. 
observed forecast.  Red curve illustrates the remapping that will occur between a forecast 
precipitation amount and the corrected amount, based on the CDF correction technique. 
Orange curve denotes remapping between forecast and mean observed given the forecast.  
(c) For 10 mm, a typical ensemble forecast distribution with a mean of 23-27 mm (solid 
line), the adjusted distribution (dashed line), and the conditional distribution of the 
observed values given an ensemble mean of 23-27 mm (in red).  
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Figure 8:  BSS of the basic analog technique as a function of the month and the lead time 
of the forecast. (a) Skill at 2.5 mm, (b) skill at 25 mm. 
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Figure 9: Monthly BSS of the logistic regression technique, as in Fig. 8.  Grey shading 
on forecasts indicates skill difference relative to basic analog approach in Fig. 8; grey 
shading below the reference line indicates more skill than the basic analog approach, and 
shading above the reference line indicates less skill. 
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Figure 10: Monthly BSS of the basic technique using individual members. Skill 
differences (grey shading, as in Fig. 9) are relative to the basic analog technique in Fig. 8.
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Figure 11: Monthly BSS of the basic technique including precipitable water, with skill 
again compared via shading relative to the basic analog technique in Fig. 8.  
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Figure 12: Monthly BSS of the basic technique including 2-m temperatures and 10-m 
wind but for the basic technique including 2-m temperature and 10-m winds, with skill 
again compared via shading relative to the basic analog technique in Fig. 8. 
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Figure 13: Reliability diagrams for 2.5 mm 1-day forecasts from (a) 50-member basic 
analog technique, and (b) 50-member rank analog technique. 

 



 54 

 

 
 

Figure 14:  Monthly BSS for the rank analog technique, with skill again compared via 
shading relative to the basic analog technique in Fig. 8. 
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Figure 15:  Monthly BSS of the rank analog with smaller search region technique.  Skill 
differences here are with respect to the rank analog technique in Fig. 14. 
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Figure 16: Monthly BSS of the smoothed rank analog technique.  Skill differences here 
are with respect to the rank analog technique in Fig. 14. 
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Figure 17:  Probability of greater than 2.5 mm precipitation for the 24-h period starting 
0000 UTC 11 January 1994, from (a) rank analog technique, and (b) smoothed rank 
analog technique. 


